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ABSTRACT Automated food recognition is essential in order to streamline dietary monitoring. To build
and evaluate complex food recognition models, large datasets of annotated food images are crucial. In this
paper, we introduce a new dataset called THFOOD-100, which is specifically designed for this purpose.
This dataset consists of 53,459 high-quality images of popular Thai dishes categorized into 100 classes.
We conducted a comprehensive comparison of 23 deep convolutional neural network and vision transformer
architectures to establish a strong baseline for classification performance on the THFOOD-100 dataset.
Additionally, we proposed training themodels using cyclical learning rates, which has been shown to improve
model generalization and significantly reduce training time. We demonstrated the effectiveness of cyclical
learning rates with three standard optimizers on THFOOD-100, ETHZ Food-101, and UEC-Food256. The
top-performing model achieved a 96% classification accuracy on THFOOD-100, showing great promise for
real-world applications. Our new dataset is specifically aimed at better representing Thai cuisine in food
recognition research, and our analyses offer valuable insights into the shortcomings of current models.

INDEX TERMS Deep learning, food dataset, food recognition, image classification, learning rate.

I. INTRODUCTION
Dietary monitoring is essential for the management and treat-
ment of many medical conditions, such as diabetes, obesity,
Alzheimer’s disease, and vitamin and mineral deficiency.
It is also valuable to pregnant women, breastfeeding mothers,
and health-conscious people, as an awareness of nutritional
intake allows them to adjust their eating habits to match their
goals. Food recognition systems offer a promising future for
effortless dietary monitoring through automatic food labeling
from images taken using devices such as smartphones, smart
glasses, and wearable cameras.While different use cases may
require tracking different quantities absorbed from food, such
as energy,macronutrients, vitamins, andminerals, identifying
the type of food consumed is a vital initial step.

Although food recognition can be considered a special
case of fine-grained object recognition, where the model
needs to distinguish between subcategories within a category,
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food images have unique characteristics that pose additional
challenges compared to object recognition. For example, food
ingredients have deformable shapes, and partial occlusion of
ingredients in the dish is often unavoidable. Furthermore,
there is a significant intra-class variation and inter-class
pattern overlap. Additionally, cuisines are inherently specific
to regions and cultures, unlike regular objects.

Training accurate classifiers requires large amounts of
high-quality task-specific labeled data. While techniques
such as transfer learning [1], weakly supervised pretrain-
ing [2], self-supervised learning [3], and synthetic data
generation [4] have been developed to ease this requirement,
models pretrained in the traditional supervised fashion still
often perform the best [5]. Food image datasets have
grown steadily in recent years, yet they predominantly
feature a limited range of cuisines. Western, Chinese, and
Japanese cuisines are well represented in multiple datasets.
In contrast, other cuisines are significantly underrepresented
or not included at all, even in datasets that cover a mix of
cuisines. This lack of diversity in visual food patterns across
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various cuisines hinders the development of methods that can
accurately recognize a wide variety of cuisines. The bias also
skews our perception of progress in this field. In response to
this issue, we have developed THFOOD-100, a new dataset of
Thai food images for the food recognition task. This dataset
comprises 53,459 images categorized into 100 classes. Our
aim is for this dataset to allow Thai cuisine to be better
represented in research within this area.

Notable qualities of THFOOD-100 include high-quality
images, accurate labels, high distinguishability, and dishes
exclusively prepared by restaurants. We carefully screened
the images to ensure that only high-quality ones were
included in the dataset. Each image was manually prepro-
cessed to remove irrelevant parts and enhance its quality.
The image labels were specified by domain experts and had
to match the user-provided labels if available. Classifying
food images can be challenging due to label overlap (e.g.,
fried cheese and mozzarella sticks), obstruction of crucial
ingredients, or visual similarity between dishes. To address
this, we carefully categorized the dishes and excluded images
that could not be confidently identified. We only included
restaurant-prepared dishes, which were more consistent and
standardized than user-prepared ones.

Convolutional neural networks (CNNs) and vision trans-
formers (ViTs) have become prevalent in recent food
recognition research due to their superior image classification
accuracy compared to traditional visual feature extractors [6],
[7]. However, training these models requires significant
computational power, given the model’s complexity, the need
for large datasets, and the optimization of numerous hyperpa-
rameters. Smith [8] introduced cyclical learning rates (CLR),
a type of learning rate schedule characterized by incremental
and decremental steps repeated in cycles. Experimentation
has shown that CLR allows for the use of higher learning
rates, resulting in fewer training steps required. Throughout
our study, we utilized CLR and showcased the method’s
effectiveness in producing models with higher accuracy with
short training process. A quicker turnaround time could
stimulate faster progress in the advancement of deep learning
for food recognition and other related tasks.

The study’s key contributions are as follows:
• We create the THFOOD-100 dataset, which consists of
53,459 high-quality images of Thai food categorized
into 100 classes. This dataset is publicly accessible for
research purposes.

• We propose the use of cyclical learning rate schedule for
training deep neural networks for food recognition. Our
evaluation across three food datasets demonstrates that it
outperforms other learning rate schedules while keeping
training time low.

• We establish a strong baseline for prediction perfor-
mance on THFOOD-100 by thoroughly evaluating CNN
and ViT architectures at two different image resolutions.

Our contributions and findings provide valuable resources
and advance the development of automated food recognition
methods, ultimately benefitting dietary monitoring users.

TABLE 1. List of public datasets for food recognition.

II. RELATED WORK
A. FOOD RECOGNITION DATASETS
Large datasets of labeled food images are necessary to prop-
erly train and evaluate food recognition methods. Although
the proliferation of smartphones and Internet access has led
to an exponential increase in the availability of food images,
the process of labeling, filtering, and preprocessing these
images still require significant human efforts. As a result,
currently available public datasets for food recognition are
still lacking in size, quality, and variety of cuisines covered.
Table 1 lists existing public datasets for the food recognition
task. While the number of images in these datasets as a
whole may already be sufficient to build accurate models, the
diversity of cuisines covered is still inadequate. To this end,
we constructed THFOOD-100, a new dataset of Thai food
images focusing on high image quality and accurate labels,
which allows Thai food to be better represented in research
in this area.

Compared to the only other Thai food image dataset,
THFOOD-50 [9], THFOOD-100 doubles the number of
classes and more than triples the number of images. Images
in THFOOD-50 were obtained using search engines, and
images of uncooked food, images containing multiple dishes,
as well as non-food images were included. To eliminate
these issues, we emphasized image quality, accurate labels,
and non-ambiguity through strict filtering standards and
meticulous manual effort when constructing THFOOD-100.
As Thai food is underrepresented in most datasets with
mixed cuisines, THFOOD-100 can be readily merged with
other datasets with minimal extra processing to form a
larger dataset, which can be used to pretrain or benchmark
models.
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B. FOOD RECOGNITION
The ubiquity of mobile devices, advances in computer
vision algorithms, and faster hardware have resulted in the
emergence of a field of food computing.While there aremany
research tasks in this area, food recognition from images
is one of the most fundamental tasks, with many use cases
such as food logging, calorie estimation, and self-checkout.
Earlier works employed color features, texture features, and
traditional visual descriptors paired with standard machine-
learning classifiers. Reference [29] used color histograms,
speeded-up robust features (SURF), and linear support vector
machines to build a real-timemobile food recognition system.
In [30], ingredients were first detected at individual pixel
granularity based on local textures using semantic texton
forests. The frequencies and locations of detected ingredients
were further classified using multi-kernel support vector
machines to determine the food type.

Later, deep neural networks such as CNNs and ViTs
were made possible thanks to graphic processing unit
(GPU)-accelerated training and started to gain traction.
Unlike othermethods, deep learningmodels can perform both
feature extraction from raw images and classification based
on these features by themselves. Although these models
required large amounts of training data, their classification
performance was unmatched by prior methods, thanks to
their ability to represent complex visual patterns. As a result,
CNNs and ViTs have since become one of the most widely
used image classifiers. Reference [31] compared CNN-based
features to several traditional visual descriptors, including
Gabor features, local color contrast, color and edge direc-
tivity descriptor (CEDD), and local binary patterns (LBP).
The features were analyzed using the k-nearest neighbor
algorithm and support vector machines to identify food types.
The CNN features significantly outperformed all other visual
descriptors. Reference [32] utilized an ensemble of two
models based on Inception and ResNet architectures and an
output fusion scheme for food recognition, taking the best
of both models and improving the accuracy. Reference [33]
used a cyclical learning rate schedule together with snapshot
ensemble to produce a set of CNNs whose outputs were
averaged to produce the final prediction. The idea of using
cyclical learning rates to train CNNs is similar to ours.
However, we use only the final model instead of multiple
models from different stages of training. Reference [34]
compared the recognition accuracy of ResNet, ResNeXt, and
SENet architectures and used them in their food logging
system, FoodAI. Reference [35] extended the Wide Residual
Network to enhance recognition of vertical patterns present
in many food types. Reference [36] developed a CNN with
a self-attention mechanism and utilized ensemble learning
to take advantage of each model’s strong points, ulti-
mately improving the classification accuracy. For our work,
we compared a wide array of CNN and ViT architectures
to provide a strong baseline of classification performance
on THFOOD-100.

C. PORTION ESTIMATION
Many dietary monitoring applications, such as calorie count-
ing and nutrient tracking, benefit from portion estimation or
volume estimation as it allows the nutrients being tracked
to be more precisely quantified. However, it is challenging
to infer scale from regular images taken in an uncontrolled
manner. Consequently, portion estimation methods typically
use one of the following approaches: including a reference
object with a known size (e.g., a spoon) in the image, using
depth information from 3-dimensional (3D) depth sensors,
and controlling the distance and angle between the food
and the camera. To accurately estimate food volume, image-
based approaches often involve reconstruction of the food’s
3D model. The number of images required varies depending
on the method, ranging from one image to two images to
multiple images. By necessity, single-image methods make
strong assumptions about the relationship between shapes
and textures, leading to lower overall accuracy. Requiring
multiple images imposes a significant burden on the user but
yields a more accurate estimate.

Dehais et al. used two images to estimate food volume in
a 3-stage system [37]. First, salient points in both images are
matched, and the objects’ scale is inferred from a reference
card placed near the food plate. The system then performs
a dense reconstruction to create a 3D model of the food.
Lastly, different food items on the plate are segmented
and separated from the background, and their volumes are
estimated. Gao et al. also used two images of the food, one
top-down and one side view [38]. Echo ranging through a
smartphone’s speaker and microphone was used to measure
the distance to the food. Yang et al. proposed a method that
infers scale from a smartphone’s motion sensor, the length or
the width of the smartphone, and setting the bottom of the
smartphone on the tabletop (which must be flat), eliminating
the need to use a reference object or a specialized depth
sensor [39]. Vinod et al. used a single image of food placed
on a reference board [40]. This image was matched to the
reference 3D model of the food, and the object pose was
estimated. The calorie was then calculated from the volume
of the 3D model.

These methods, while innovative, only provide estimates
of the food volume or weight. Therefore, a separate food
recognition and/or food segmentation step remains crucial to
estimating the nutrients in the food. Any portion estimation
method can be used with any food recognitionmethod, so that
advances in either task will improve the overall accuracy of
nutrient tracking.

D. CYCLICAL LEARNING RATES (CLR)
Learning rate (LR) is the central hyperparameter of the
training process. At each training iteration, the magnitude
of model parameter updates is the product of LR and the
gradient. The most straightforward LR policy is fixed LR,
where LR is kept constant throughout the training process.
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FIGURE 1. Commonly used learning rate schedules. This figure is only
meant to show the overall patterns. Relative scale of learning rates and
number of iterations should not be inferred from the figure.

Even then, the LR value must be appropriately tuned. Small
LR results in slow training, while large LR results in the
model parameters bouncing around, not converging to a
local optimum. Beyond fixed LR, methods for accelerating
convergence while ensuring a good optimum is reached have
been developed. These methods fall into two classes: pre-
defined LR schedules and adaptive learning rate methods.
With pre-defined LR schedules, LR is specified as a fixed
function of the training step. Commonly used LR schedules
include step functions, exponential decay, cosine decay,
polynomial decay, and CLR [8], as shown in Fig. 1.
With CLR, LR increases linearly from a fixed minimum

to a fixed maximum, then decreases linearly back to the
minimum. This cycle may be repeated multiple times.
This policy is called the triangular policy. The author
also proposed two additional CLR policies: triangular2 and
exp_range, where LR decays by half in the former, and by an
exponential factor in the latter after each cycle. CLR has been
shown to provide similar accuracy with faster convergence,
made possible through a higher maximum LR [41].
In the adaptive learning rate approach, a different LR is

used for each parameter instead of using the same LR for
all parameters. Momentum [42] weighs each update by an
average of the recent gradients, improving convergence by
effectively dampening oscillation and reinforcing consistent
updates. Nesterov momentum [43] additionally looks ahead
and adjusts the LR accordingly based on the approximate
future gradient. While both momentum-based approaches are
not generally referred to as adaptive learning rate methods,
they also effectively utilize a different LR for each parameter.

Other adaptive learning rate methods build upon one
another. In AdaGrad [44], the LR is weighted by the cumu-
lative gradients squared, normalizing the updates of sparse
and dense parameters. RMSprop [45] and Adadelta [46]
improved upon this by replacing cumulative gradients with

the exponential moving average of the square of past gradi-
ents, fixing AdaGrad’s problem of large cumulative gradients
stagnating later parameter updates. Adadelta additionally
replaced the LR with an average of recent parameter updates,
eliminating the need for specifying the LR. Adam [47] built
upon RMSprop by incorporating momentum into its update
rule and adding bias correction. These methods are also
referred to as optimization algorithms or optimizers.

Although both classes of approaches were designed toward
the same goal, they can be applied simultaneously by using
the product of the global LR and a parameter-specific LR
as the effective LR. As CLR has been shown to provide
a significant speedup without sacrificing accuracy, we pair
it with adaptive learning rate methods and evaluate its
effectiveness for our task.

III. THFOOD-100 DATASET
In this work, we constructed a new food image dataset called
THFOOD-100 and used it to evaluate a variety of models and
methods. This section describes the dataset characteristics,
data collection procedure, and data preprocessing methodol-
ogy. THFOOD-1001 is a dataset of Thai food images taken
by users and manually labeled by domain experts for the food
recognition task. Each image has a single label corresponding
to the dish’s name. Both popular Thai dishes and local
dishes from all regions are incorporated. Only images of
restaurant-prepared food are included, and stringent criteria
are imposed to ensure high image quality and accurate labels.
We manually inspected all images and performed image
adjustments when necessary. We imposed these requirements
so that every image provides sufficient information to
designate the class, at least for trained humans. This high
degree of distinguishability gives us a reference point, which
provides a better sense of progress when developing and
evaluating classifiers. The dataset construction method is
detailed below.

A. IMAGE COLLECTION
We collected food images from Wongnai, Thailand’s leading
restaurant review platform. Users may give ratings, write
reviews, or upload photos for each restaurant. In this first
step, we aimed to maximize the number of images and types
of food collected. The detailed image collection steps are as
follows:

1) We collected as many food images as practically
possible from restaurants in all regions. Wongnai
allows the uploading user to optionally provide the dish
name. In order to minimize the human effort involved,
only dish images labeled by the uploaderwere collected
in this step.

2) We manually filtered out low-quality, irrelevant, and
incorrectly labeled images. These included non-food
images, blurry images, images with bad lighting, and
images with prominent compression artifacts. We set

1Publicly available at https://github.com/NawanolT/THFOOD-100
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FIGURE 2. Examples of excluded images. Top row shows typical images from six classes. Bottom row shows excluded images in the corresponding
classes along with the reason for exclusion.

the minimum image size as 400×400 pixels. Examples
of excluded images are depicted in Fig. 2.

3) We determined the classes by first grouping dish names
that refer to the same dish. Dishes that were too
difficult even for humans to distinguish were excluded.
For example, grilled pork was often highly similar
to deep-fried pork, so we included only grilled pork
as it contained more images. Only dishes typically
consumed as part of main meals were included. Raw
fruit and vegetables, drinks, snacks, and desserts were
also excluded. The top 100 classes with the most
images were retained in this step.

4) At this step, some classes still had fewer than
200 images, which was the target we had set as
the minimum number of images per class. Therefore,
we obtained more images by manually collecting
images not labeled by the user while simultaneously
filtering out low-quality images. As the user-provided
labels were unavailable, we only included images
we could confidently identify. This step ensured an
adequate number of images for both training and
evaluation for every class.

B. IMAGE PREPROCESSING
As the images were taken by the users in various conditions
in an uncontrolled manner, many images required further
adjustments to improve the quality and remove irrelevant
parts of the images. The image preprocessing steps were as
follows:

1) The image’s lighting was adjusted if necessary. If the
resulting image was still too dark or looked unnatural,
we excluded it from the dataset.

2) If an image contained multiple dishes, we divided it
into multiple images, each with a single label. The
divided images must still meet the earlier requirements,
including image resolution.

3) The image was cropped so that the non-relevant parts
were minimized, preventing confusion about which
dish the label referred to and allowing the model to
focus on the relevant portion.

Each image was preserved at its original resolution upon
collection to accommodate models that can utilize images of
any size. The median image resolution was 1920 × 1311.

C. IMAGE LABELING
Two domain experts independently labeled the images.
Only images they could confidently label were retained.
Despite this, the recognition of the remaining images remains
challenging because some dishes have multiple unique
ingredients or unique combinations of ingredients. Themodel
needs to discover such information from images, each of
which may visibly contain only a subset of those ingredients.
Images of food cooked or prepared in non-standard styles
were excluded.

Duplicated images and near-duplicates were removed from
the dataset using duplicate image detection software and
human verification. Two images of the same plate of food
were considered non-duplicated if the camera perspectives
differed.

To evaluate the labels’ accuracy and provide a reference
level for human classification performance, we tested the two
domain experts six weeks after the labeling process using
a subset of the test set. We sampled three to four images
from each class to form a mini test set of 350 images. Their
classification accuracy was 0.9857 and 0.9829, respectively.

D. DATASET STATISTICS
The final dataset contains 53,459 images in 100 classes. Each
image contains a single label. Fig. 3 illustrates the distribution
of the number of images in each class. The number of images
per class ranges from 201 to 3,619, signifying a significant
class imbalance. The top 20 classes account for roughly
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FIGURE 3. Distribution of the number of images in each class.

FIGURE 4. Sample images from all classes in the THFOOD-100 dataset.

half of all images. This distribution does not necessarily
correspond to the users’ actual consumption preference or
frequency, as users tend not to upload photos of regular,
everyday meals to the restaurant review platform because
they seem uninteresting. We therefore suggest giving equal
importance to all classes when evaluating a classifier using
THFOOD-100, e.g., by measuring balanced accuracy.

Fig. 4 depicts sample images from all classes in THFOOD-
100. Note that irrelevant backgrounds were removed from the
images so that there is no ambiguity and attention is directed
toward the actual food. Fig. 5 illustrates the strong intra-class
variation of 27 randomly chosen classes. Differences in
restaurants’ preparation styles, lighting conditions, and

FIGURE 5. Sample images of the THFOOD-100 dataset in groups of three
images per class showing strong intra-class variation.

camera angles contributed to the diversity of the images in
the dataset.

Fig. 6 provides examples of visually similar classes.
Images in these classes can be challenging even for
trained humans to label confidently. Food ingredients have
deformable shapes, and their appearance can be affected
by other ingredients and the cooking method, making them
harder to recognize than rigid objects. For this reason, this
dataset and other food recognition datasets in general would
serve as excellent benchmarks of the generalization power of
image classifiers.

The classifier training, hyperparameter optimization, and
evaluation processes typically require three non-overlapping
subsets: the training, validation, and test sets. We divided
the dataset into the training, validation, and test subsets
using ratio of 55:20:25. However, instead of performing
the division at the granularity of images, we divided the
dataset at the granularity of restaurants. This process was
performed independently for each class. For example, for
class x, if restaurant y was assigned to the validation set, all
images of class x from restaurant y would be assigned to the
validation set. This division method allows the evaluation of
a classifier’s ability to generalize across restaurants instead
of across images. Restaurants often have their own styles
of preparing and garnishing a dish, making generalizations
across restaurantsmore challenging. However, this evaluation
method reflects actual use cases. We also ensured that,
for each class, the validation and test sets have at least a
proportionate number (20% and 25%, respectively) of unique
restaurants, which helped reduce the variance of measured
accuracy metrics.
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FIGURE 6. Visually similar classes in THFOOD-100.

THFOOD-100 prioritizes high image quality and accu-
rate labels, accomplished through manual verification and
preprocessing. Our dataset only includes images of food
prepared by restaurants, not food made in households, which
is prevalent on search engines. Restaurant-prepared food is
generally more standardized and of higher quality than user-
prepared food. We ensured that each image contained enough
information to identify the class. We also provided human
experts’ accuracy level of 0.9843 as a reference point and a
potentially attainable goal for researchers to aim for.

IV. METHODOLOGY
The goal of this work is to establish a strong baseline of clas-
sification performance on THFOOD-100 and compare CLR
with other standard LR schedules in various configurations.
This section describes the training and testing processes, the
CNN and ViTmodels used as the classifiers, the CLRmethod
used in model training, the data augmentation technique, and
the software library used in model training.

A. OVERVIEW
Figure 7 depicts the overview diagram showing the classifica-
tion model training process using CLR and the testing phase.
The food image dataset is divided into non-overlapping
subsets for training and testing. Images in the training subset
are grouped into batches which are fed into the CNN or
ViT model to compute the predictions. The predictions
are compared with the ground truth labels to calculate the
prediction errors. The errors are used to compute the gradient.
The CLR module specifies the learning rate based on the
current batch number. The gradient and the learning rate are
then multiplied, and the results are used to update the model’s
weights. The same training process repeats with another batch
of data, until the specified number of passes (epoch) over the
training data is reached. The resulting model can be evaluated
using the test images to determine its classification accuracy
or used in a food logging application.

B. CNN AND ViT MODELS
Convolutional neural networks (CNNs) are a class of artificial
neural networks with convolutional layers. These layers allow
detection of objects in an image regardless of where they
are in the frame. As a result, CNNs perform very well
in image classification tasks compared to earlier methods,
such as relying on visual descriptors as feature extractors.
Vision transformers (ViT) are also a class of artificial
neural networks created by adapting transformer designed
for natural language processing to the computer vision tasks.
An image is divided into patches, which are converted to
vectors. These vectors are then processed by a transformer
encoder to make predictions. As CNNs and ViT gain
popularity, many architectures have been developed over
the years. Which architecture performs the best depends on
the patterns in the images, dataset size, image resolution,
among other factors. Smaller architectures tend to require
smaller training sets but are not as good at capturing complex
patterns compared to larger architectures. To provide a strong
baseline for THFOOD-100, we compared as many standard
CNN and ViT architectures as possible. They are listed along
with their sizes in terms of the number of parameters in
Table 2. Note that some families of architectures provide
similar architectures that only differ in size (number of layers
and number of nodes in each layer).

Training a CNN/ViT from scratch requires a large amount
of training data, in the order of millions of images. With
smaller training datasets, it is likely to suffer from overfitting.
Fortunately, transfer learning is a technique that allows
training CNNs/ViT using smaller datasets. The model can
be further fine-tuned to adapt to the target task. A recent
study showed that using transfer learning for a dataset
of our size would provide faster convergence and better
generalization performance than training from scratch [1].
Therefore, we used transfer learning with fine-tuning to train
all models in this study.
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FIGURE 7. Overview diagram showing the classification model training process using CLR and the testing
phase.

TABLE 2. CNN and ViT architectures included in the comparison.

The model training process with transfer learning and
fine-tuning is as follows: First, the network is pretrained using
the large ImageNet dataset [62]. These pretrained models
are provided by the software library. In order to adapt the
model for our task, the original output layer of the network
is replaced by a two-dimensional global average pooling
layer, followed by a dropout layer and the output layer in the
one-hot encoding representation. In the transfer learning step,

the weights of the original network are fixed, and only the
weights of the output layer are trained. In the subsequent fine-
tuning step, all weights of the network are no longer fixed and
are trained at the same time. The dataset of the target task
(i.e., the food recognition dataset) is used for training in both
steps.

The first step is necessary because training the completely
random weights of the new output layer requires a larger LR
compared to fine-tuning the weights of the feature extractors
of the network. Using a large LR for the whole network
would destroy the feature extractors learned in the source
task. After the first set of weights of the output layer is
obtained, we further fine-tune the visual feature extractors
represented by the network weights to adapt from the source
task to the target task using a lower LR. We have found from
our experiments that this second step significantly boosts the
classification accuracy, indicating that some distinguishing
visual patterns of food are distinct from those of everyday
objects.

C. CYCLICAL LEARNING RATES
A LR schedule specifies how LR changes throughout the
course of the training process. The most straightforward LR
schedule is fixed LR, where LR is kept constant. Beyond
fixed LR, examples of LR schedules include step functions,
exponential decay, cosine decay, polynomial decay, and CLR.

Smith [8] introduced three CLR policies: triangular,
triangular2, and exp_range. We have found that the
triangular policy with only one cycle and 20 epochs works
best for our models and dataset. CLR can be used with all
standard optimizers. However, because of the tight interaction
between the LR schedule and optimizer, CLR’s effectiveness
may vary andmust be separately evaluated for each optimizer.
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Even with CLR, however, the minimum and maximum
LRs are hyperparameters that still need to be specified. Small
LRs result in slow training, while large LRs result in the
model parameters bouncing around, not converging to a local
optimum. The author suggested performing an ‘‘LR range
test,’’ which involves training the model for only several
epochs while increasing the LR and then plotting LR versus
validation accuracy. The largest LR where the accuracy still
has an increasing trend would be the optimal LR. Based on
our experimentation, however, the LR range test does not
produce the optimal maximum LR. Due to this and the fact
that the LR range test requires human input, we decided to
use greedy hyperparameter optimization using the validation
set to optimize maximum LR. We used LR = 0.01 × 1.5k ,
with k being an integer, starting with any user-defined
value and increasing and decreasing until a local optimum
is reached. We have found from our experiments that this
optimization problem is convex, so the local optimum is also
the global optimum. The minimum LR was set as 0.05 of the
maximum LR, as suggested in [63]. We used the built-in CLR
implementation for PyTorch and [64] for TensorFlow.

D. DATA AUGMENTATION
Data augmentation is a technique for artificially increasing
the training dataset size. Images randomly undergo various
transformations and adjustments to produce slightly modified
images, which are then used as additional training images.
Although not as helpful as additional real data, these
transformed images can improve the model’s generalization
by reducing overfitting. There are two approaches to
performing data augmentation: offline and online. In the
offline approach, images are transformed before model
training to produce a static augmented training dataset.
Each image can be transformed in multiple ways, producing
multiple augmented images. In the online approach, image
transformation operations are implemented as the first layers
of the network. Right before the model processes each
image, the image is randomly transformed before it is used
for training in place of the original image. We used the
online approach to train our models because it allowed
us to reap the benefits of data augmentation without
increasing computational requirements due to a larger
training set.

V. RESULTS
We first compare various CNN and ViT architectures to
provide a strong baseline on THFOOD-100.We then compare
CLR to other LR schedules using commonly used optimizers
on three food datasets. We assess the effectiveness of
data augmentation in improving classification performance.
We examine the best model’s misclassifications to gain
insights into improving the results further. Finally, we analyze
the relationship between the size of the dataset and the
prediction accuracy to determine howmuch improvement can
be gained with more data.

A. EVALUATION MEASURES
We use balanced accuracy (BA) as the primary performance
metric. The conventional accuracy metric is affected by the
class distribution of test data, which is highly unbalanced on
THFOOD-100. Conventional accuracy would give a larger
emphasis on the classes with more images. A classifier’s
performance can be more appropriately measured by giving
equal importance to each class. Balanced accuracy is defined
as

BA =
1
m

m∑
i=1

TPi
TPi + FNi

, (1)

where m is the number of classes and TPi and FNi are the
numbers of true positives and false negatives for class i,
respectively. It can be viewed as either the average of recall
of each class or the weighted accuracy, where each sample
is weighted inversely proportional to the number of samples
in that class. BA ranges from 0 to 1, with a higher value
corresponding to a lower classification error rate, similarly
to conventional accuracy. In addition to the described
top-1 BA, we also use top-3 BA as a secondary metric.
An image’s classification is considered correct if any of the
top three predicted labels matches the true label.

B. TRAINING PROCESS
We used transfer learning with fine-tuning to train all CNN
and ViT models. We used CLR with 20 epochs as the LR
schedule to accelerate training. We used the Adam optimizer
by default. LRs for the transfer learning and fine-tuning steps
were separately optimized using the validation set. We used
the greedy approach to optimize all hyperparameters. Class
imbalance was handled by assigning class weights inversely
proportional to the number of training samples. Non-square
images were maximally center-cropped to a square shape
before other operations. Two image resolutions were used:
256×256 and 512×512 pixels. Random zooming and random
cropping data augmentation methods were implemented as
the first layers of all models. Random zoom ratios were in the
range of [1, 1.25]. 256×256 images were randomly cropped
to 224×224, and 512×512 images were randomly cropped to
448× 448. Random zooming was not applied during testing,
and images were center-cropped to produce the same image
resolution as training images. The image’s aspect ratio was
always kept identical to the original image’s. The batch size
was 64, while the dropout ratio was 0.3. We repeated the
training and evaluation of each configuration at least three
times and reported the average value.

We implemented MobileNetV4-Hybrid-M and SwinV2-T
using the PyTorch library and the remaining CNN models
using the TensorFlow library. All implementation details
were matched to ensure a fair comparison. We conducted
all experiments on a machine with an Intel Core i5-12400F
processor, 64 gigabytes of memory, and an Nvidia GeForce
RTX 3090 graphic processing unit (GPU) running the Ubuntu
23.10 operating system.
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TABLE 3. CNN and ViT architecture comparison on THFOOD-100.

C. CNN AND ViT ARCHITECTURE COMPARISON
Table 3 presents the comparison of CNN and ViT architec-
tures on THFOOD-100. There is a considerable difference
in classification accuracy across different architectures.
SwinV2-T performed best overall, followed by Efficient-
NetV2 family of models and MobileNetV4-Hybrid-M.
Interestingly, models that performed well included both small
and large models. The rankings of architectures at both image
resolutions are similar. At image resolution of 256 × 256,
SwinV2-T outperformed other models by a large margin,
indicating that themodel can effectively recognize fine details
even at low resolution. At 512×512, the gaps narrowed down
but SwinV2-T still produced highest classification accuracy
of 0.9638. Comparing this to human experts’ accuracy of
0.9843, SwinV2-T still made 131%more errors than humans,
which suggests that there is still room for improvements.
However, such level of accuracy is already adequate for food
logging, where the user can correct the occasional errors,
especially since top-3 accuracy is over 0.99.

Increasing image resolution from 256 × 256 to
512 × 512 lowered the error rate by 39% on average,
except for SwinV2-T where the error rate decreased by 24%.
Such a significant improvement despite no other changes
to the models implies that the level of detail present in
256 × 256 images is insufficient for accurate classification
for most models. On the other hand, the smaller accuracy gap
for SwinV2-T suggests that it is more effective at classifying
lower-resolutioned images. Increasing image resolution

raises both memory and computational requirements, which
are proportional to the number of pixels. 512 × 512 is the
image resolution limit on our single-GPU testbed.

D. CYCLICAL LEARNING RATES
In this experiment, we compared CLR with other LR
schedules using common optimizers. The top two models for
the 512 × 512 image resolution (SwinV2-T and Efficient-
NetV2B3) and their best configurations for THFOOD-100
from the previous section were employed. We chose the
higher resolution as the basis of the comparison because
the classification accuracy at the lower resolution was
inadequate for real-world usage. Adam, Stochastic Gradient
Descent (SGD), and SGD with Nesterov momentum (with
momentum = 0.99) were included as the optimizers. The
learning rate was optimized separately for each configuration.
Four LR schedules were included in the comparison: CLR
with 20 epochs, fixed LR with 100 epochs, fixed LR with
20 epochs, and cosine decay with 20 epochs. With cosine
decay, a linear warmup period of 1 epochwas used, increasing
the learning rate from 0.05 of the target LR to the target LR.
A cosine decay function was then applied for the remaining
19 epochs. These four LR schedules were evaluated using
THFOOD-100 and two standard benchmark datasets: ETHZ
Food-101 and UEC-Food256. 55%, 20%, and 25% of the
images in each dataset were assigned as the training set,
validation set, and test set, respectively. Balanced accuracy
was the primary performance metric for THFOOD-100,
but conventional accuracy was used for ETHZ Food-101
and UEC-Food256 to allow direct comparison with existing
works. Statistical significance tests were performed using
one-tailed unpaired t-tests. p-values lower than 0.05 indicate
that the difference is statistically significant.

ETHZ Food-101 is a commonly used benchmark dataset
for food recognition. It contains 101,000 images in
101 classes and was developed by Bossard et al. [16]. The
images were taken by users and collected from the Internet.
The dataset includes food from various cuisines, but the
majority are Western. The classes are perfectly balanced,
with 1,000 images each. The authors provided an official
test set split with manually cleaned images and labels. The
remaining training images were intentionally not cleaned,
so they contained some noises, such as unnatural colors and
incorrect labels. We randomly split the remaining images into
the training set and the validation set.

UEC-Food256 is a publicly available food image dataset
with 31,395 images in 256 classes, developed by Kawano
and Yanai [18]. It was expanded from UEC-Food100, which
has 100 classes of primarily Japanese food, to include various
cuisines such as American, Italian, French, Chinese, Korean,
Vietnamese, Thai, and Indonesian. The 256 classes are
unbalanced, with 100 to 728 images in each class. The authors
did not provide an official split, so we randomly divided
the dataset into the training set, validation set, and test set.
The dataset also provides the bounding box indicating the
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FIGURE 8. Comparison of learning rates schedules on three datasets
using SwinV2-T architecture.

location of the food item in each image, but we did not use
this information in our training scheme.

Fig. 8 presents the results of comparison using the
SwinV2-T ViT architecture. On THFOOD-100, CLR pro-
duced similar levels of accuracy (p-values > 0.23) to cosine
decay with Adam optimizer, and fixed LR 100 epochs with
SGD and SGD w/ Nesterov momentum optimizer. In the

remaining cases, CLR produced higher accuracy than other
LR schedules with statistical significance (p-values< 0.016).
The choice of optimizer did have a small impact on the
accuracy in most cases. Overall, the Adam optimizer tended
to produce highest accuracy.

On ETHZ Food-101, CLR outperformed all other LR
schedules with statistical significance (p-values < 0.035).
Cosine decay and fixed LR 100 epochs produced similar
results, while fixed LR 20 epochs produced lowest accuracy.
The choice of optimizer did not significantly affect the
results.

On UEC Food-256, with Adam optimizer, CLR produced
similar accuracy to fixed LR 100 epochs, and lower accuracy
than cosine decay. When SGD was used, CLR outperformed
fixed LR 100 epochs (p-value = 0.037) and produced similar
accuracy to cosine decay (p-value = 0.070). With SGD
w/ Nesterov momentum, CLR, fixed LR 100 epochs, and
cosine decay produced similar results. Fixed LR 20 epochs
produced lowest accuracy regardless of optimizer used. The
choice of optimizer affected the results slightly but there were
no systematic trends that held across all LR schedules.

To summarize the results for the SwinV2-T model, the
number of cases where CLR performed better, equal, and
worse than cosine decay are 5, 3, 1. The number of cases
where CLR performed better, equal, and worse than fixed LR
100 epochs are 5, 4, 0. Cosine decay performed well on the
UEC Food-256 dataset, while CLR performed well on the
THFOOD-100 and ETHZ Food-101 datasets. We inspected
these datasets to find key differences that might help explain
the contrasting results.We found that UECFood-256 contains
many images of 3–5 Japanese dishes served together in small
plates and bowls. Each dish often has a valid label of their
own, so there can be confusion about which dish the label
refers to. The authors of the dataset provided a bounding box
information which would eliminate the problem, but we did
not use it because we framed our task as image classification
rather than object detection. Furthermore, the number of
images per class for UEC Food-256 is lower at 123, compared
to THFOOD-100’s 535 and ETHZ Food-101’s 1,000. UEC
Food-256 includes a more varied types of cuisines than the
other datasets. These differences in the characteristics of the
datasets could have led to the dissimilar results.

Fig. 9 depicts the results of the comparison using
EfficientNetV2B3 CNN architecture. On THFOOD-100,
CLR produced similar levels of accuracy to fixed LR
100 epochs when the SGD or SGD w/ Nesterov momentum
optimizer was used (p-values ≥ 0.45), surpassing fixed
LR 20 epochs and cosine decay with statistical significance
(p-values ≤ 0.03) in all cases except between CLR and
cosine decay when SGD w/ Nesterov momentum optimizer
was used (p-value = 0.12). With Adam optimizer, however,
CLR performed significantly better than the remaining
LR schedules (p-values ≤ 0.02). If we turn our focus
to the optimizers, we found no significant differences
between them, except in one case: when CLR were used
with Adam, the accuracy was higher than with other
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FIGURE 9. Comparison of learning rates schedules on three datasets
using EfficientNetV2B3 architecture.

optimizers (p-values ≤ 0.009). As training time is pro-
portional to the number of epochs but not affected by
the LR schedule or optimizer, CLR 20 epochs requires
only one-fifth of the training time required by fixed LR
100 epochs. Although CLR produced similar accuracy to
fixed LR 100 epochs in some cases, the 5x training speedup
it provides is still substantial advantage.

TABLE 4. Existing results on food recognition on the ETHZ Food-101
dataset.

TABLE 5. Existing results on food recognition on the UEC-Food256
dataset.

On ETHZ Food-101 and UEC Food-256, CLR’s
results stood out from the rest by a significant margin,
regardless of the optimizer used (p-values ≤ 0.006 for
ETHZ Food-101 and p-values ≤ 0.015 for UEC Food-256).
The results for fixed LR 100 epochs, fixed LR 20 epochs,
and cosine decay were similar, as there were no systematic
trends across configurations. There were also no significant
differences between the three optimizers.

Comparing between fixed LR 100 epochs and fixed LR
20 epochs, the results on THFOOD-100 were better with
100 epochs, just as we had expected the gradual optimization
process to yield a better model. However, on ETHZ Food-
101 and UEC Food-256, the results with 100 epochs were
not always better. Twenty training epochs could be enough
for the models to capture the patterns on these datasets,
or the variation across runs is simply larger than the effect
of increasing the number of training epochs.
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TABLE 6. Comparison of various data augmentation methods.

To summarize the results on both models, CLR outper-
formed cosine decay and fixed LR 100 epochs in most cases
(13 out of 18 and 12 out of 18 cases, respectively). In the
remaining cases, cosine decay and fixed LR 100 epochs
produced similar results to CLR, except for only one case
where cosine decay performed better than CLR. Fixed LR
20 epochs performed worst in most cases. It is important
to note that fixed LR 100 epochs require 5x training time
compared to other setups which required only 20 epochs.
To put it in perspective, training the SwinV2-T on the training
and validation subsets for 20 epochs takes roughly 3.5 hours
on our testbed. With 100 epochs, the training time becomes
17.4 hours. High training time makes it more costly to
perform hyperparameter optimization, ultimately resulting
in suboptimal model performance. For reference, previous
results on the ETHZ Food-101 and UEC-Food256 datasets
are presented in Tables 4 and 5. Our results did not set
a new state of the art, as this was not the intention of
our work. We simply used the neural network architectures
that worked best for THFOOD-100 for these datasets.
However, the fact that CLR produced better accuracy than
other LR schedules in most configurations suggests that the
state-of-the-art models could produce even better results if
combined with CLR.

E. DATA AUGMENTATION
Data augmentation is a commonly employed technique
to reduce overfitting and improve the accuracy of a
classifier. This experiment aims to evaluate whether data
augmentation is beneficial and which transformation or
combination thereof produces the significant improvements
on THFOOD-100.

We employed the same best configuration from the
previous experiments. The SwinV2-T architecture was used.
The image resolution was 512 × 512 when cropping data
augmentation was used and 448 × 448 otherwise, keeping
the resolution of the transformed image uniform. Each type
of data augmentation involves performing the alteration to
a random degree within the specified range. The range for
brightness adjustment was [−0.2, 0.1] relative to the range
of pixel values (255). The rotation angle’s range was not

limited, and the missing pixels of the rotated image were
filled with reflections of the image. Cropping was performed
by choosing a random 448 × 448 part of the image to
retain. The range for contrast adjustment was [−0.2, 0.2].
As we wished to restrict zooming to zooming in only, each
image’s zoom ratio was randomized between 1 and 1.43x
(corresponding to 0.7 height and width factors). The image’s
aspect ratio was kept identical to the original image’s. Data
augmentation was only performed during training, except for
cropping, which became center cropping during testing. Each
method was compared to the no data augmentation setup
using one-tailed unpaired t-tests, with the expectation that
data augmentation would increase the accuracy.

The results are presented in Table 6. As the top-3
balanced accuracy is similar and close to 1, we focus
our attention on top-1 balanced accuracy. We first started
with a comparison of single image transformations. Only
zooming and cropping improved the accuracy with statistical
significance. We subsequently evaluated the combination of
zooming and cropping. However, zooming alone, cropping
alone, and their combination all resulted in similar accuracy
improvements. Cropping, which produced highest accuracy,
decreased error rate by 12%.

Overall, the results are similar to those reported in [87],
where zooming in improved the accuracy. The edges of food
images typically only contain noninformative parts, such as
the food plate, sauces, drinks, and background. Zooming
in magnifies the patterns of actual food, thereby effectively
increasing image resolution. However, compared to fixed
zoom ratios, random zoom ratios provide the same benefits
while allowing the model to learn about patterns near the
edges of the images. These edges are critical in some images
as the main part of the food is not always in the center.
The fact that combining zooming and cropping did not
yield further improvements suggests that cropping could be
providing similar effects to zooming. Favoring simplicity,
we conclude that either zooming or cropping alone is the
optimal data augmentation method, providing a modest yet
consistent improvement.

F. MISCLASSIFICATION ANALYSIS
In this section, we examine the top model’s misclassifica-
tions to gain insights into its shortcomings and potential
approaches to further reducing the errors. We sampled a
uniform number of images for each class from the training
set to remove the confounding effect of class imbalance.
After sampling, all classes contained 151 training images.
The top errors, defined as top three pairs of classes (x, y)
where x ̸= y with the highest fraction of images in class
x misclassified as class y, are depicted in Fig. 10. Among
the top errors, dumplings misclassified as crispy pork belly,
deep-fried squid misclassified as deep-fried soft-shell crab,
and fried wontons misclassified as fried spring rolls were the
most prevalent, accounting for 4.65%, 3.49%, and 2.67% of
all errors, respectively.
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FIGURE 10. Top misclassifications of the best model. On each row, images on the left are misclassified images with the actual labels while
images on the right are training images of the predicted class.

Dumplings and crispy pork belly are dishes humans can
easily recognize and distinguish. The primary source of
the model’s confusion was likely the shrimp roe on top
of the dumplings, as all misclassified images contained it.
In our dataset, several restaurants top the dumplings with
shrimp roe, but most of their images were assigned to the
test set. The few remaining images in the training set also
had different appearances. Thus, the model, encountering
the unfamiliar dumpling styles, mistakenly associated the
shrimp roe with the crispy pork belly’s skin, which was
its unique characteristic. The presence of soy sauce, more
frequently served with crispy pork belly, might have also
contributed to the confusion. This shortcoming of the model
does not apply to humans, who view objects as a whole and
would realize that the objects’ overall shapes were closer
to dumplings than crispy pork belly. Generative models
mimic human perception by considering the overall object,
unlike discriminative models such as CNNs that focus solely
on distinguishing features. However, developing generative
models that can classify images as well as discriminative
models with limited data remains a challenge. Increasing the
dataset size remains a reliable and straightforward solution
that could prevent this misclassification.

Deep-fried squid being misclassified as deep-fried soft-
shell crab was the next biggest source of errors. While squid
and soft-shell crab have distinctive shapes and textures, both
dishes are similarly coated in batters and often topped with
fried garlic, which covers the meat and hinders recognition.

However, after examining all misclassified images, we can
confidently say that humans would not make such mistakes,
thanks to better comprehension of object structures in three
dimensions and perception of minute details such as squid
skin and tentacles. The model likely could not group the
similarities among the diverse images and generalize from
them due to the lack of structural understanding. Algorithmic
improvements are necessary to overcome this limitation,
although more data would incrementally reduce these
errors.

Fried wontons and fried spring rolls are both deep-fried
dishes with similar golden brown color tones. Both are
often served with plum sauce or chili sauce. While the
textures of both dishes are often similar, in most cases
their shapes are unmistakably different. Fried spring rolls
have cylindrical shapes while fried wontons generally have
triangular shapes. Indeed, the misclassified fried wontons
did not have triangular shapes. They were folded in an
uncommon way that the middle part resembled the ends
of fried spring rolls. While there were a wide variation of
fried wonton shapes in the training images, none looked
like the misclassified images. Therefore, it is understandable
that the model made such mistakes. Humans, however, are
less likely to have the same confusion, because the fried
wontons did not have cylindrical shapes. This suggests that
the model relies on textures more than objects’ shapes
when classifying images that are different from what it
has seen before. Ensuring that the training dataset is
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comprehensive enough to cover most or all patterns the user
may encounter is one solution. Nevertheless, a more reliable
and permanent solution would be to develop newmodels with
improved shape comprehension that rely on shapes more than
textures.

In summary, the model had good texture recognition,
potentially comparable to humans’. Dishes that the model
was confused with usually had an overall composition and
textures similar to the actual dish. However, it faced a
challenge in recognizing the shapes of objects, an area
where it is noticeably less proficient than humans. Some
misclassifications were due to insufficient patterns covered
by the training set. More data and improvements to the
models are two approaches that would allow the models will
close the gap and come closer to human experts’ level of
classification accuracy.

G. ACCURACY SCALING WITH DATASET SIZE
Even with transfer learning, neural networks still benefit
from more training data for the target task. At some point,
however, there will likely be diminishing returns. With this
experiment, we aimed to explore the trends of how much the
size of the training dataset impacts prediction performance.
This knowledge would guide future efforts in data collection
toward improving the models.

We performed the experiments in two scenarios. In the first
scenario, we sampled an equal number of images from each
class to form a balanced training set. In the second scenario,
we maintained the original unbalanced class distribution
while varying the fraction of the training data used. In both
cases, the entire test set was used for evaluation.

The results are illustrated in Fig. 11. We plot the accuracy
on the logit scale, defined with the logit function

logit(p) = log
(

p
1 − p

)
= log

(
ncorrect
nincorrect

)
, (2)

where p is the balanced accuracy, and ncorrect and nincorrect are
the weighted numbers of correctly and incorrectly classified
samples, respectively. An additive increase in accuracy in
the logit scale corresponds to a multiplicative increase in
the odds of a correct classification. The logit function can
capture the fact that as accuracy approaches 1, it becomes
increasingly difficult to increase the accuracy by the same
absolute amount. The training set sizes are plotted on a
logarithmic scale.

In the case of balanced classes, each doubling of the
training set size produces a linear improvement in top-1
and top-3 accuracy for the entire range of 1–151 images
per class. When the classes are unbalanced, each doubling
of the training set size produces a linear improvement in
top-1 and top-3 accuracy from 4–267 images per class.
Doubling the number of images per class to 534 provides
diminishing returns. These results indicate that the model
can still benefit from more training data, although the rate

FIGURE 11. How prediction accuracy scales with training dataset size.
Top: balanced classes. Bottom: unbalanced classes. Y-axes are in logit
scale, while X-axes are in logarithmic scale.

of improvements starts to decrease beyond 267 images
per class. Therefore, collecting more data remains a
straightforward approach to improving classification accu-
racy. Other potential approaches include creating new neural
network architectures targeted to food recognition, more
extensive or better pretrain datasets than ImageNet, and
better transfer learning techniques. One of the ultimate goals
of computer vision is creating classification models that
perform well (e.g., at the human level) without a large
amount of training data. However, for now, it remains a
challenge.

VI. CONCLUSION
This paper introduces THFOOD-100, a new dataset for Thai
food recognition comprising 53,459 images categorized into
100 classes, made publicly available for research purposes.
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We established a strong baseline for classification perfor-
mance by extensively comparing CNN and ViT architectures.
Our experiments with 256 × 256 and 512 × 512 image
resolutions demonstrated that SwinV2-T, unlike other mod-
els, can achieve satisfactory accuracy even at a lower
resolution. Comparison between CLR and other LR sched-
ules on three food datasets demonstrated CLR’s superior
performance. The resulting models generally exhibited better
generalization despite the low training time. Analyses of
the top model’s misclassifications and how accuracy scales
with dataset size suggest that more data would further
reduce the error rate. However, further advances in classi-
fication models or training methods are necessary to attain
human-level performance, particularly with limited data.
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